Abstract

A new electrode was prepared by the electrooxidation of orto-, meta-, and para-substituted nitro phenols on glassy carbon electrode. Electrochemical modification of the electrodes was carried out in 0.01 M HCl using cyclic voltammetry (CV). Then nitro groups in the covalently grafted nitro phenol derivatives on GC electrode were reduced to amine groups in 0.01 M HCl. The electrochemical behavior of the modified electrodes was studied in the presence of electroactive redox probes such as ferrocene and ferricyanide by CV and electrochemical impedance spectroscopy (EIS). X-ray photoelectron spectroscopy (XPS) was employed to characterize the surface structure and composition of the modified substrates. Thickness of the films was measured by using an ellipsometer. Surface topography of the nanofilms and bare GC was characterized via AFM. Graphene oxide (GO) was covalently attached on 4-aminophenyl involved surface through EDC. Simple immersing of the GO covered nanoplatform into a sample solution led to the chemical deposition by means of the interaction with Cd2+ and Pb2+ ions, simultaneously. Various analysis parameters that affect the simultaneous analysis of the ions such as deposition time, pH factor and deposition temperature, were optimized. Calibration curve for the GO grafted electrode surface with Square-wave anodic stripping voltammetry (SWASV) were obtained in the concentration range between 1 × 10−8 M and 1 × 10−12 M for Pb2+ and Cd2+. The detection limits of the modified electrode for Pb2+ and Cd2+ ions were determined to be about 3.2 (± 0.1) × 10−13 M and 2.4 (± 0.2) × 10−13 M, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.