Abstract

Disturbances of muscle electrogenesis are observed in a number of muscle pathologies, particularly, they are found in the mdx mice, which are a laboratory model of Duchenne myodystrophy. This myodystrophy develops due to mutations in the gene of the dystrophin protein, which controls the synthesis of this protein in the cytoskeleton. The effectiveness of therapy for such myodystrophy by methods of cellular and genetic engineering has not been studied with regard to the muscle membrane electrogenesis. In this study, two months old mdx mice were irradiated by X-ray at a dose of 3 Gy and injected intravenously by wild type bone marrow cells suspension from long bones of C57Bl/6 mice. Four months after such non-myeloablative bone marrow cells transplantation the recovery of resting membrane potentials as well as parameters of miniature end-plate potentials of mdx mice diaphragm muscle was observed. Our data show the effectiveness of the replacement of the mutant bone marrow with the bone marrow of wild type in myodystrophy caused by the deficiency in dystrophin protein synthesis. Refs 20. Figs 3. Table 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.