Abstract
Efficient electrogeneration of hydrogen peroxide (H2O2) is critical for treatment of refractory pollutants by the electro-Fenton process. An effective strategy is developed by combining a flow-through reactor with a polytetrafluoroethylene (PTFE)-modified graphite felt cathode. In this design, anodic oxygen is directly used for efficient H2O2 generation at the modified cathode. Experimental results show that the modified cathode with the optimum PTFE content can produce 29.6 mg/L of H2O2, which is 16 times higher than the unmodified graphite felt cathode for a flow rate of 3 mL/min. Maximum H2O2 production, up to 30.7 mg/L, was obtained under the following conditions: 120 mA, 3 mL/min, initial pH 13, no external aeration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.