Abstract

A Pt(II) alkynyl terpyridine complex containing a carbazole moiety, [Pt((t)Bu(3)tpy)(C≡C-C(6)H(4)-4-carbazole-9)](+) ((t)Bu(3)tpy = 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine) 1, has been synthesized and characterized. The photophysical behavior has been studied, and the molecular structure has been determined by X-ray crystallography. The complex was found to exhibit intense electrogenerated chemiluminescence (ECL) using peroxydisulfate (S(2)O(8)(2-)) as coreactant in acetonitrile/water (1-25%, v/v) mixture at both glassy carbon and gold electrodes, representing the first ECL example of the Pt(II) alkynyl family. The ECL was produced at potential corresponding to the first reduction wave (-0.90 V vs SCE), significantly shifted by ∼0.65 V toward more positive potential compared with that of [Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine). The ECL spectrum was found to be identical to the photoluminescence spectrum recorded in the same medium, indicating the formation of the same excited state of dπ(Pt) → π*((t)Bu(3)tpy) (3)MLCT mixed with π(C≡CR) → π*((t)Bu(3)tpy) (3)LLCT in both cases. The ECL mechanism was proposed involving the formation of the strongly oxidizing intermediate, SO(4)(•-), mainly generated during the catalytic reduction of S(2)O(8)(2-) by the electrogenerated 1(-). Chemiluminescence of 1/S(2)O(8)(2-) based on reduction with Al metal is also described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call