Abstract
In this work, the relation between the photovoltaic and resistive switching (RS) properties of metal-oxide-semiconductor devices containing Si nanocrystal (Si NC) superlattices is investigated. A first approximation concludes that the low resistance state achieved by the RS process allows for enhanced photogenerated carrier extraction when compared to the high resistance state and pristine devices. By using different current compliance values during the electroforming process, the low resistance state is further modified, improving its conductivity and the collection probability of photogenerated carriers. Conversion efficiency is enhanced by at least one and up to five orders of magnitude by applying different electroforming processes. In addition to promoting the RS properties in these devices, spectral response measurements demonstrate that Si NCs are partially responsible for the optical absorption, and that their contribution is maintained after electroforming. We thus conclude that the proposed methodology can improve the conversion efficiency of this and other multijunction solar cells or structures that also exhibit RS properties. Through RS, a dense network of conductive filaments is promoted in the insulating region, which reduces the travel distance of photocarriers for their collection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.