Abstract

Localized surface plasmon resonance (LSPR) biosensors typically suffer from diffusion limited mass transport and nonspecific adsorption upon detection of biomolecules in real biofluids. We employ here a peptide-modified plasmonic gold nanohole (AuNH) array for real-time detection of human troponin I (cTnI). Applying a negative electric bias on the AuNH sensor chip enables us to attract and concentrate cTnI at the sensor surface, while repelling other proteins thus decreasing interferences due to nonspecific adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.