Abstract

The viability of the Electro-Fenton (EF) process in the selective degradation of penicillin G (PenG) in complex solutions has been studied. The role of the anode material (boron-doped diamond (BDD) or mixed metal oxide (MMO)) and the cathode 3D support (foam or mesh), as well as the synergistic effect of UVC light irradiation (photoelectron-Fenton, PEF), have been evaluated. The results show that Pen G can be efficiently and selectively removed by EF, obtaining higher PenG removal rates when using the BDD anode (100%) than when using the MMO anode (75.5%). Additionally, mineralization is not favored under the experimental conditions tested (pH 3, 5 mA cm−2), since both aromatic and carboxylic acids accumulate in the reaction system as final products. In this regard, the EF-treated solution presents a high biological oxygen demand and a low percentage of Vibrio fischeri inhibition, which leads to high biodegradability and low toxicity of this final effluent. Furthermore, the combination with UVC radiation in the PEF process shows a clear synergistic effect on the degradation of penicillin G: 166.67% and 83.18% using MMO and BBD anodes, respectively. The specific energy required to attain the complete removal of PenG and high inhibition of the antibiotic effect is less than 0.05 Ah dm−3. This confirms that PEF can be efficiently used as a pretreatment of conventional wastewater treatment plants to decrease the chemical risk of complex solutions polluted with antibiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call