Abstract

The human brain is a large-scale network the function of which depends on dynamic interactions between spatially distributed regions. In the rapidly evolving field of network neuroscience, two unresolved challenges hold the promise of potential breakthroughs. First, functional brain networks should be identified using noninvasive and easy-to-use neuroimaging techniques. Second, the time-space resolution of these techniques should be good enough to assess the dynamics of the identified networks. Emerging evidence suggests that the electroencephalography (EEG) source-connectivity method may offer solutions to both issues, provided that scalp EEG signals are appropriately processed. Therefore, this technique's performance strongly depends on signal processing that involves various methods, such as preprocessing approaches, inverse solutions, statistical couplings between signals, and network science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.