Abstract

Over the past decade, emotion detection using rhythmic brain activity has become a critical area of research. The asymmetrical brain activity has garnered the most significant level of research attention due to its implications for the study of emotions, including hemispheric asymmetry or, more generally, asymmetrical brain activity. This study aimed at enhancing the accuracy of emotion detection using Electroencephalography (EEG) brain signals. This happens by identifying electrodes where relevant brain activity changes occur during the emotions and by defining pairs of relevant electrodes having asymmetric brain activities during emotions. Experimental results showed that the proposed method is highly competitive compared with existing studies of multi-class emotion recognition. These results were improved by processing not the whole EEG signals but by focusing on fragments of the signals, called epochs, which represent the instants where the excitation is maximum during emotions. The epochs were extracted using the zero-time windowing method and the numerator group-delay function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call