Abstract

Pain modulates rhythmic neuronal activity recorded by Electroencephalography (EEG) in humans. Our laboratory previously showed that rat models of acute and neuropathic pain manifest increased power in primary somatosensory cortex (S1) recorded by electrocorticography (ECoG). In this study, we hypothesized that pain increases EEG power and corticocortical coherence in different rat models of pain, whereas treatments with clinically effective analgesics reverse these changes. Our results show increased cortical power over S1 and prefrontal cortex (PFC) in awake, freely behaving rat models of acute, inflammatory and neuropathic pain. Coherence between PFC and S1 is increased at a late, but not early, time point during the development of neuropathic pain. Electroencephalography power is not affected by ibuprofen in the acute pain model. However, pregabalin and mexiletine reverse the changes in power and S1-PFC coherence in the inflammatory and neuropathic pain models. These data suggest that quantitative EEG might be a valuable predictor of pain and analgesia in rodents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.