Abstract

There is fundamental knowledge that during the resting state cerebral activity recorded by electroencephalography (EEG) is strongly modulated by the eyes-closed condition compared to the eyes-open condition, especially in the occipital lobe. However, little research has demonstrated the influence of the eyes-closed condition on the motor cortex, particularly during a self-paced movement. This prompted the question: How does the motor cortex activity change between the eyes-closed and eyes-open conditions? To answer this question, we recorded EEG signals from 15 voluntary healthy subjects who performed a simple motor task (i.e., a voluntary isometric flexion of the right-hand index) under two conditions: eyes-closed and eyes-open. Our results confirmed strong modulation in the mu rhythm (7–13 Hz) with a large event-related desynchronisation. However, no significant differences have been observed in the beta band (15–30 Hz). Furthermore, evidence suggests that the eyes-closed condition influences the behaviour of subjects. This study gives us greater insight into the motor cortex and could also be useful in the brain-computer interface (BCI) domain.

Highlights

  • Every day we accomplish voluntary movements in our environment, and yet the simplicity with which we perform these movements contrasts with the high complexity of their underlying physiological and neuronal processes

  • With the EC condition, significantly higher power values (**, p < 0.01) of the spectrum were measured on C3 for a real movement in the upper mu rhythm (10–13 Hz) and low beta band (15–25 Hz) (Fig. 4A)

  • Only changes in the mu band were observed (Fig. 4), and support the first hypothesis, other results (Fig. 8) showed clearly differences in term of EEG power for movement phases (Pre-M, M and Post-M) between both conditions. These results suggest that the mechanism on the motor cortex is different between the two conditions, in EC condition because there was no synchronisation in the mu rhythm but a synchronisation in the beta band (Fig. 8)

Read more

Summary

Introduction

Every day we accomplish voluntary movements in our environment, and yet the simplicity with which we perform these movements contrasts with the high complexity of their underlying physiological and neuronal processes. For an internal voluntary movement, the motion is selected according to a defined goal, based on internal cognitive processes relative to our previous experience. This is contrary to a reflex response which is an immediate and stereotyped reaction to a stimulus from the environment (Haggard et al, 2005). For an external voluntary movement, the motor preparation phase is absent, but the phases of stimulus processing and anticipation are maintained (Brass & Haggard, 2008).

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.