Abstract

Aim of the reviewThe primary aim of this systematic review was to investigate the most common electroencephalogram (EEG)-based machine learning (ML) model with the highest Area Under Receiver Operating Characteristic Curve (AUC) in two ML categories, conventional ML and Deep Neural Network (DNN), to predict the neurologic outcomes after cardiac arrest; the secondary aim was to investigate common EEG features applied to ML models. MethodsSystematic search of medical literature from PubMed and engineering literature from Compendex up to June 2, 2023. One reviewer screened studies that used EEG-based ML models to predict the neurologic outcomes after cardiac arrest. Four reviewers validated that the studies met selection criteria. Nine variables were manually extracted. The top-five common EEG features were calculated. We evaluated each study’s risk of bias using the Quality in Prognosis Studies guideline. ResultsOut of 351 identified studies, 17 studies met the inclusion criteria. Random Forest (RF) (n = 7) was the most common ML model in the conventional ML category (n = 11), followed by Convolutional Neural Network (CNN) (n = 4) in the DNN category (n = 6). The AUCs for RF ranged between 0.8 and 0.97, while CNN had AUCs between 0.7 and 0.92. The top-three commonly used EEG features were band power (n = 12), Shannon’s Entropy (n = 11), burst-suppression ratio (n = 9). ConclusionsRF and CNN were the two most common ML models with the highest AUCs for predicting the neurologic outcomes after cardiac arrest. Using a multimodal model that combines EEG features and electronic health record data may further improve prognostic performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.