Abstract

Background: In this study, we analyze metastability, a feature of brain dynamics in subjects experiencing mild cognitive impairment Alzheimer's disease (MCI-AD) under eyes open (EO) and eyes closed (EC) conditions. Alzheimer's disease (AD) is a critically prolonged brain disorder that interrupts neural synchronization and desynchronization. Thus, studying metastability under EO and EC conditions would help in understanding the cortical dynamics and its impact in early-stage AD. Methods: Metastability is investigated using three methods namely frequency variance analysis, Kuramoto order parameter, and through meta-state activation patterns. Frequency variance estimated from 21 electroencephalogram (EEG) channels was clustered into three regions namely anterior, central, and posterior to study the regional metastability analysis. Global metastability was assessed from Kuramoto order parameter and meta-state activation patterns by collating the 21 EEG channels. Results: Reduction in metastability was observed in central regions of MCI-AD subjects through the study of frequency variance analysis. There was a marked reduction in global metastability in the patient group under the resting EO condition. Reduction in meta-state activation properties such as temporal activation sequence complexity, modularity, and leap size in MCI-AD condition under the EO condition indicates an overall reduction in brain flexibility. Conclusion: Taken together, the study infers an underlying structural change in neuronal dynamics influencing the reduction of metastability under the MCI-AD condition. The study further revealed that this reduction in metastability is more pronounced in the EO condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call