Abstract

Langasite is a very promising material for resonators due to its good temperature behavior and high piezoelectric coupling, low acoustic loss, and high Q factor. The biasing effect for langasite resonators is crucial for resonator design. In this article, the resonant frequency shift of a thickness-mode langasite resonator is analyzed with respect to a direct current (DC) electric field applied in the thickness direction. The vibration modes of a thin langasite plate fully coated with an electrode are analyzed. The analysis is based on the theory for small fields superposed on a bias in electroelastic bodies and the first-order perturbation integral theory. The electroelastic effect of the resonator is analyzed by both analytical and finite-element methods. The complete set of nonlinear elastic, piezoelectric, dielectric permeability, and electrostrictive constants of langasite is used in the theoretical and numerical analysis. The sensitivity of electroelastic effect to nonlinear material constants is analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.