Abstract
In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular n-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic governing equations were decomposed by using the auxiliary function method, and the solution forms of the elastic wave field and electric field were obtained by using the wave function expansion method. Then, the triangular boundary was simplified to a circular boundary using the mapping function, and the corresponding modal coefficients were determined according to simplified boundary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the dynamic stress concentration. We performed numerical simulations with a correlation coefficient of (1 − x)[(Ba0.94Ca0.06) (Ti0.92Sn0.08)]-xSm2O3-0.06 mol% GeO2 (abbreviated as (1 − x)BCTS-xSm-0.06G). The numerical calculation results show that the incident wave number, piezoelectric properties, shape parameters of the hole, and deflection angle have a great influence on the dynamic stress around the defect, and some significant laws are summarized through analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.