Abstract

We report the initial investigation of the electrodynamics of visible-light interaction with the outer segment of the vertebrate retinal rod based on detailed, first-principles computational electromagnetics modeling. The computational method employs a direct time integration of Maxwell’s equations in a two-dimensional space grid for both transverse-magnetic and transverse-electric vector-field modes. Detailed maps of the optical standing wave within the retinal rod are given for three illumination wavelengths: 714, 505, and 475 nm. The standing-wave data are Fourier analyzed to obtain spatial frequency spectra. Except for isolated peaks, the spatial frequency spectra are essentially independent of the illumination wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.