Abstract

metal layers are calculated in the regime when size quantization of electron motion and their nonlocal contribution to conductivity play an essential role. In the THz region and in helium temperatures, this regime is realized if the thickness of metal layers is comparable to the skin-depth and metal film becomes partially transparent. Due to size quantization, the Landau damping is also quantized, leading to new resonances in surface impedances of metal film. An avoided crossing of these resonances with Fabry-Perot photonic pass bands gives rise to narrow band gaps where, nevertheless, the density of photonic states does not vanish. Such dark photonic states populating the new band gaps exhibit strongly anomalous dispersion and strong decay, as it is required by the Kramers-Kronig relations. The decay is due to the quantized Landau damping and it remains finite even in the collisionless limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.