Abstract

The phenomenon of the fluorescence polarization of solutions has found numerous applications in biophysics, biochemistry, immunology, and diagnostic and clinical medicine. The current theory to explain the phenomenon of fluorescence polarization in solutions was developed by F. Perrin in 1926. Perrin based his theory on the belief that fluorescence polarization is a manifestation of rotational Brownian motion. Fluorescence polarization, however, is an electromagnetic radiation phenomenon. Using Maxwell's equations, suitably modified to account for the quantum behavior of fluorescence, E. Collett developed a theory of fluorescence polarization (the electrodynamic theory) based on a model of dipole-dipole interactions. The electrodynamic theory is used to investigate protein-protein assays to determine the minimum and maximum binding distances between the proteins for (1) an estrogen receptor DNA bound to a fluorescein labeled estrogen response element and (2) a green fluorescent protein chimera of S-peptide (S65T-His6) bound to a free S-protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.