Abstract

This paper concerns the effects of electrodynamic forces that act on current paths that are part of high-grade industrial distribution switchgear. This work is composed of experimental and simulation sections. In the experimental section, the short-circuit tests are presented and the occurrence of electrodynamic forces are shown in a visible way. The formation of electrodynamic forces in the current circuits of electrical energy distribution systems is related to the flow of high currents, but mostly it is related to short-circuit currents. In order to highlight these phenomena, the detailed specification of the parameters during tests is displayed. In the simulation section, the physical phenomenon of electrodynamic forces is being captured by employing a detailed real-scale model of switchgear and current paths. Therefore, the authors proposed employment of the FEM (finite element method) in order to obtain values of electrodynamic forces acting on the current paths by executing the detailed 3D coupled simulation. The analysis of the results and aftermath effects of their interactions provided interesting conclusions that concerned the operation of such power distribution layouts in critical short-circuit conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call