Abstract

The conventional thermal method of preparing hafnium alkoxides [Hf(OR)4 , R=alkyl] - excellent precursors for gate-dielectric HfO2 on semiconductors - is severely hindered by its unsatisfactory environmental and economic burdens. Herein, we propose a promising electrodissolution-coupled Hf(OR)4 synthesis (EHS) system for green and efficient electrosynthesis of Hf(OR)4 . The operational principle of the electrically driven system consists of two simultaneous heterogeneous reactions of Hf dissolution and alcohol dehydrogenation, plus a spontaneous solution-based combination reaction. In applying ethanol as solvent and Hf metal as electrodissolution medium, we achieved waste-free production of high-purity hafnium ethoxide [Hf(OEt)4 ] with an equivalent "a concomitant" reduction in CO2 emission of 187.33 g CO2 per kg Hf(OEt)4 and a high net profit of 30 477 USD per kg Hf(OEt)4 . This system is very competitive with the thermal process, which unavoidably releases substantial waste and CO2 for a net profit of 27 700 USD per kg Hf(OEt)4 . We anticipate that the environmental and economic benefits of the EHS process could pave the way for its practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.