Abstract

A number of bioactive peptides find their potential applications in food or pharmaceutical industry; however, there arise some limitations of their large-scale production to satisfy market demands. Although pressure-driven membrane processes are able of continuous production and separation of peptides, these technologies often demonstrate insufficient selectivity. Electrophoresis is a well-known purification process characterized by high resolution of separated species but it is limited by relatively low production capacity. On the other hand, electromembrane processes offer high production capacity but their limitation is the size of separated molecules. Electrodialysis with inserted ultrafiltration membranes is an alternative method of peptide separation into fractions, their concentration and possibly demineralization at the same time to achieve large production quantities. It is a hybrid process combining conventional electrodialysis and electrophoresis principles using ultrafiltration membranes. These membranes serve as a molecular barrier separating two types of solution while the driving force remains electric potential difference. This article offers state-of-the-art summary in the field of bioactive peptide separation and fractionation by electrodialysis with ultrafiltration membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.