Abstract

This paper describes a new approach to pressure sensors development using field emission and capacitive principles. Both sensors consist of two high doped silicon electrodes. Usually, for both pressure measurements, one electrode is anisotropic etched to obtain a sensitive membrane and the other one is solid with a carbon nanotubes (CNTs) array. The field emission sensor works on the principle that the field emission current is correlated with the electrical field intensity, i.e. the anode-emitter distance when the applied voltage is fixed. The capacitive sensor takes advantage of CNTs dimensions to increase the surface. This means that the CNTs array in the emission sensors serves as the emitter source of electrons between the cathode and the anode in the electric field and the CNTs arrays in the capacitive sensors increase the surface of the electrodes, which are similar to a plate capacitor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call