Abstract

Here, we demonstrate a facile bottom-up strategy to fabricate Pt nanoclusters (Pt NCs) grafted onto three-dimensional graphene foam (3D GF) assisted by cetyltrimethyl ammonium bromide (CTAB) using the electrodeposition method. The homogeneous grafting of Pt NC onto 3D GF is due to the formation of hemimicelles above some CTAB concentration. With the unique nanocluster structure and the high content of Pt0, the Pt NC/3D GF nanohybrid exhibits extremely high activity and shows higher reusability and stability. Apart from the intrinsic oxidase-like activity with 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate, the Pt NC/3D GF nanohybrid can act simultaneously as an effective polyphenol oxidase (PPO) mimic, such as tyrosinase, catechol oxidase, and laccase. More importantly, utilizing intrinsic catechol oxidase-like activity and the oxidase-like activity with TMB as the substrate of the nanohybrid, distinguishing colorimetric determination of dihydroxybenzene isomers (catechol and hydroquinone) is performed. Distinguishing colorimetric analysis of dihydroxybenzene isomers was first developed using nanozymes. The present work provides a simple bottom-up approach for the reasonable fabrication of various nanostructured nanozymes with excellent performance using the electrodeposition method assisted with surfactants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call