Abstract

Electrodeposition is a very versatile tool to fabricate multicomponent TiO2 nanotube array (NTA) composites. However, the understanding of the correlation between the component structure and the fabrication technique has not been clearly investigated yet, though it has been observed that the performance of composites is bound up with the component structure. In this work, the photoelectrochemical properties of In2S3-TiO2 NTA composites prepared by CV electrodeposition, potentiostatic electrodeposition and pulse electrodeposition, respectively, were investigated. The results revealed that the as-prepared photoelectrodes exhibited electrodeposition technique-dependent properties, and the pulse prepared In2S3-TiO2 yielded the highest and stable photocurrent response, consequently exhibiting a superior photocatalytic activity in the degradation of p-nitrophenol (PNP). This may be attributed to the homogeneous, ultra-fine structure of In2S3 nanoparticles (NPs), which brings about a high charge separation efficiency. Furthermore, the trapping tests showed that both radicals and holes were the main active species in the photocatalytic degradation of PNP. This work not only provided a firm basis for maximizing photocatalytic activity via tuning fabrication techniques but also gave a deep insight into the photocatalytic mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call