Abstract

A reasonable design of excellent bifunctional catalyst is an effective strategy for large-scale hydrogen production. In this study, a two-stage electrodeposition method was used to prepare a crystalline-amorphous structure cobalt molybdenum phosphide layered particles with different sizes on a nickel foam (NF) substrate. Electron rearrangement at the Co/CoMoP2@CoMoO4 heterogeneous interface can reduce the reaction energy barrier for HER and OER, and accelerate the catalytic reaction kinetics. The doping of Mo can promote the synergistic effect between Co and Mo, thereby optimizing the Gibbs free energy of hydrogen adsorption/desorption. This layered arrangement of different size particles greatly improves the active area of the catalyst. In alkaline solution, achieving a current density of 10 mA cm−2 only required overpotentials of 40 mV for HER and 278 mV for OER, respectively. The cell voltage required for the CoMo-P/NF||CoMo-P/NF electrolytic cell is only 1.53 V at 10 mA cm−2. This study provides a reference for the rapid, efficient, and environmentally friendly preparation of high-activity water splitting catalysts with large surface areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.