Abstract

AbstractAs solid‐state batteries (SSBs) with lithium (Li) metal anodes gain increasing traction as promising next‐generation energy storage systems, a fundamental understanding of coupled electro‐chemo‐mechanical interactions is essential to design stable solid‐solid interfaces. Notably, uneven electrodeposition at the Li metal/solid electrolyte (SE) interface arising from intrinsic electrochemical and mechanical heterogeneities remains a significant challenge. In this work, the thermodynamic origins of mechanics‐coupled reaction kinetics at the Li/SE interface are investigated and its implications on electrodeposition stability are unveiled. It is established that the mechanics‐driven energetic contribution to the free energy landscape of the Li deposition/dissolution redox reaction has a critical influence on the interface stability. The study presents the competing effects of mechanical and electrical overpotential on the reaction distribution, and demarcates the regimes under which stress interactions can be tailored to enable stable electrodeposition. It is revealed that different degrees of mechanics contribution to the forward (dissolution) and backward (deposition) reaction rates result in widely varying stability regimes, and the mechanics‐coupled kinetics scenario exhibited by the Li/SE interface is shown to depend strongly on the thermodynamic and mechanical properties of the SE. This work highlights the importance of discerning the underpinning nature of electro‐chemo‐mechanical coupling toward achieving stable solid/solid interfaces in SSBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.