Abstract

In view of the current energy demand for miniaturized equipment in extreme environmental fields, such as in deep space exploration. A new fan-shaped radioisotope thermoelectric generator is innovatively presented and designed. Thin-film thermoelectric materials used for miniaturized radioisotope thermoelectric generators are first prepared by electrochemical methods. The prepared fan-shaped radioisotope thermoelectric generator has a volume of 5.75 cm3 and consists of 8 thermoelectric modules and 32 thermoelectric legs. The study finds that when a 1.5 W heat source is loaded, the temperature difference of the device is 54.8 K, the output voltage and the maximum output power is 174.88 mV and 333.20 nW, respectively. On this basis, the number and size of the modules are optimized by the finite element method. When the thermoelectric leg size is optimized to 9 × 2 mm2 and the number of modules is 8, the maximum output power can be up to 369.02 nW. The corresponding experimental verification work is further developed and discussed. This work provides a novel solution for the energy supply problem of small-volume devices in extreme space environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.