Abstract

Three-dimensional Ni(OH)2 nanoflakes were prepared via a facile and cost-effective electrodeposition method using commercial activated carbon (AC) as substrate. Nitric acid treatment (NT) and partial crystallization (PC) by metal nickel catalysis were applied for AC. The effects of the oxygen-containing functional groups and the degree of crystallization on the electrochemical performance of the electrode were investigated. The resulting Ni(OH)2/PC–NT–AC/nickel foam electrode exhibits distinct performance with a specific capacitance of 2971 F/g (scaled to the mass of active Ni(OH)2) at a current density of 6 A/g. A high capacitance of 1919 F/g was still achieved even at 40 A/g, which is much higher than Ni(OH)2/AC/nickel foam electrode and Ni(OH)2/NT–AC/nickel foam electrode. The excellent performance of Ni(OH)2/PC–NT–AC/nickel foam electrode can be attributed to the presence of large surface area and highly conductive PC–NT–AC network on nickel foam. This study presents an effective method to improve the dispersion and rate capability of Ni(OH)2 nanostructure electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.