Abstract

In this work, we synthesized tantalum (Ta) nanoclusters on carbon black (Ta/CB) via simple electrodeposition in non-aqueous solvent, acetonitrile (ACN) at ambient temperature. Transmission electron microscopy (TEM) images showed that the electrodeposited Ta nanoclusters consisted of tiny Ta nanoparticles. X-ray photoelectron spectroscopy (XPS) result represented that the outermost Ta formed the native oxide on Ta/CB due to its ambient exposure to air. Electrochemical catalytic properties of prepared Ta/CB on glassy carbon electrode (Ta/CB/GC) were investigated toward reductions of oxygen and hydrogen peroxide, and oxidations of ascorbic acid and dopamine. For oxygen reduction reaction (ORR) in acid, Ta/CB/GC represented a decent electrocatalytic performance which was better or comparable to bare Pt. The operational stability in acidic condition was maintained up to 500 repetitive potential cycles presumably due to the protective native Ta oxide layer. Ta/CB/GC also showed high amperometric sensitivity (4.5 (±0.16) mA mM−1 cm−2, n = 5) for reduction of hydrogen peroxide in 0.1 M phosphate buffer solution (PBS, pH 7.4). In addition, Ta/CB/GC was demonstrated for the possibility of simultaneous detection of ascorbic acid and dopamine using differential pulse voltammetry (DPV).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.