Abstract

Studies are presented describing attempts to form a cycle for the growth of Ru nanofilms using the electrochemical form of atomic layer deposition (ALD). Au substrates have been used to form Ru nanofilms, based on layer by layer growth of deposits, using surface limited reactions. These deposits were formed using surface limited redox replacement (SLRR), where an atomic layer of a sacrificial element is first deposited by underpotential deposition (UPD), and is then exchanged for the element of interest. The use of the UPD atomic layer limits subsequent growth by limiting the number of electrons available for deposition. In the present study, Pb atomic layers were used, and exposed to solutions of Ru 3+ ions at open circuit. This process can then be repeated to grow films of the desired thickness. It was shown that less than an at.% of Pb was evident in the deposits, using electron probe microanalysis (EPMA), and even that could be removed if a stripping step was added to the ALD cycle. The deposits displayed the expected Ru voltammetry, as well as the Ru hcp XRD pattern. There were some differences in the first 20 cycles, compared with subsequent, suggesting some nucleation process that must be investigated. However, after 20 cycles, the deposit showed the linear growth with the number of cycles expected for an ALD process. The morphology of Ru films, deposited on template-stripped Au was studied using ex situ scanning tunneling microscopy (STM), and showed no evidence of 3D growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.