Abstract

The control in surface hydrophobicity and water adhesion is extremely important for various applications in water harvesting, oil/water separation membrane, energy systems or biosensing, for example. Here, for the first time we show that the use of fluorescent monomers such as pyrene with various substituents differing by their hydrophobicity, size, or rigidity/flexibility can lead to surfaces with tunable hydrophobicity, water adhesion and fluorescence properties by a direct electropolymerization process. Seven original monomers with fluoroalkyl, alkyl, phenyl, adamantyl, and triethylene glycol substituents were synthesized and studied. The surface roughness is highly dependent on the substituent, and it seems that the fluorescence, although complex, correlates with the surface roughness. Superhydrophobic properties and highly oleophobic properties are obtained using fluoroalkyl chains due to the presence of nanostructured microparticles. In comparison to the structured absorption and emission bands of p...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.