Abstract

The usage of active electrocatalysts is a useful approach to accelerate the kinetics of electrochemical reactions and to enhance the efficiency of water splitting. To fabricate active electrocatalysts, the creation of new structures that can be easily constructed has always been a research interest. Ni–Fe based alloys are generally known as active OER catalyst. However, in this study, a novel Ni–Fe micro/nano urchin-like structure is reported to be active for both HER and OER. This is the first report of the fabrication of this morphology by a fast, one-step, and affordable electrodeposition method as an efficient HER/OER electrocatalyst. The optimized Ni–Fe coating on Cu substrate demonstrated promising HER activity with low overpotentials of −124 and −243 mV at the current densities of −10 and −100 mA cm−2, respectively. Moreover, the fabricated Ni–Fe urchin-like catalyst is highly active toward OER, requiring overpotentials of only 292 and 374 mV to deliver 10 and 100 mA cm−2. The unique structure of the synthesized coating with an abundant number of micro/nano-scale cones is suggested to play a vital role in the superior HER/OER activity of the catalyst. This article introduces a cost-effective method for the fabrication of a novel urchin-like Ni–Fe alloy as a highly active bifunctional water splitting electrocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.