Abstract

Nanocrystalline Zn–Ni (crystallite sizes 13–68 nm) alloy coatings were produced from an alkaline glycinate bath containing saccharin as additive. X-ray diffraction (XRD) was used to determine the phase composition and average crystallite size of nanocrystalline Zn–Ni alloy coatings. The average grain size of a deposit was also studied by transmission electron microscopy (TEM). The effects of saccharin concentration and current density on the crystallite size and surface roughness of the coatings were studied. Crystallite size and average surface roughness were diminished as a result of increasing saccharin concentration. Scanning electron microscopy (SEM) examination showed that coatings had a colony-like morphology and the colony size was increased with increasing current density. Microhardness testing was carried out in order to determine the degree of dependence of this mechanical property on the crystallite size. It was found that microhardness did not depend on crystallite size (Hall–Petch).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call