Abstract

A novel biodegradable Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy was successfully produced using a series of metallurgical processes; including melting, casting, rolling, and heat treatment. The hardness and ultimate tensile strength of the alloy sheets increased to 71.2HV and 320 MPa after rolling and then aging for 12 h at 175°C. These mechanical properties were sufficient for load-bearing orthopedic implants. A hydroxyapatite (HA) coating was deposited on the Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy using a novel coating process combining alkali heat pretreatment, electrodeposition, and alkali heat posttreatment. The microstructure, composition, and phases of the Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy and HA coating were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The degradation, hemolysis, and cytocompatibility of the HA-coated and uncoated Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy were studied in vitro. The corrosion potential (E(corr)) of Mg-4.0Zn-1.0Ca-0.6Zr alloy (-1.72 V) was higher than Mg (-1.95 V), Mg-0.6Ca alloy (-1.91 V) and Mg-1.0Ca alloy (-1.97 V), indicating the Mg-Zn-Ca-Zr alloy would be more corrosion resistant. The initial corrosion potential of the HA-coated Mg alloy sample (-1.51 V) was higher than the uncoated sample (-1.72 V). The hemolysis rates of the HA-coated and uncoated Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy samples were both <5%, which met the requirements for implant materials. The HA-coated and uncoated Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy samples demonstrated the same cytotoxicity score as the negative control. The HA-coated samples showed a slightly greater relative growth rate (RGR%) of fibroblasts than the uncoated samples. Both the HA-coated and uncoated Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy provided evidence of acceptable cytocompatibility for medical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call