Abstract
The use of an emulsified supercritical CO2 (sc-CO2) bath for electrodeposition of Ni–P alloys was attempted. The material characteristics of the deposits with various P contents, formed by varying the electrolyte composition and deposition current density, were investigated by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) for surface morphology and chemical composition and crystal structure analyses. The experimental results showed that the presence of sc-CO2 in the electrodeposition bath could substantially improve the microhardness and the corrosion performance of the as-deposited Ni–P coatings. The roles of phosphorus and carbon in modifying the material properties of the deposits are discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.