Abstract

Electrochemical copolymerization of o-dihydroxybenzene (oDHB) and 3-methylthiophene (3MeT) was successfully achieved in boron trifluoride diethyl etherate by direct anodic oxidation of the monomer mixtures, although the oxidation potentials of oDHB and 3MeT were quite different. The influence of the applied polymerization potential on the synthesis of the copolymers was investigated. The higher applied potential favored the incorporation of 3MeT units into the copolymers. The structure and properties of the copolymers were investigated with UV-vis spectroscopy, fluorescence spectroscopy, FTIR spectroscopy, and thermal analysis. The novel copolymers had many advantages, including good redox activity, good thermal stability, and high electrical conductivity. Additionally, the copolymers fluorescence properties that were tunable through changes in the feed ratio of the monomer mixtures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.