Abstract
A novel Cu2O/TNS composite structure of single crystal TiO2 nanosheet (TNS) arrays decorated with flake-like Cu2O were synthesized by a facile hydrothermal reaction followed by the electrodeposition process. The effects of deposition potential on the microstructure, morphology, and optical property of the thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis spectrophotometer. When the deposition potential is higher than −0.4V, peaks corresponding to Cu appear, meanwhile, flake-like Cu2O become agglomerating, and transform into dense Cu2O particles. Additionally, photoelectrochemical experiments indicate that the films deposited at −0.4V show the lowest resistivity and highest exciton separation efficiency. This enhanced photoelectrochemical properties can be explained by synergistic effect of p-type flake-like Cu2O and n-type TiO2 heterojunctions combined with two-dimensional TiO2 nanosheet with exposed highly reactive {001} facets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.