Abstract

The effect of the anode material on the rate of electrodeposition of Fe−W alloy coatings from a citrate bath is studied. Both Fe and Ni soluble anodes and Pt and graphite insoluble anodes are addressed. The effects associated with the anode material are attributed to anodic oxidation of an Fe(II)−citrate complex involved in electrodeposition. In addition to its likely oxidation at the anode, this complex catalyzes reduction of W-containing species and acts as precursor to Fe deposition; these processes unfold via the formation of corresponding intermediates, their surface coverage determining the alloy composition. X-ray photoelectron spectroscopy characterization of deposited alloys indicates that the intermediate FeOHads is oxidized by water to form surface oxides. This process can explain the previously reported macroscopic size effect, i.e., the effect of the volume current density on the microhardness of deposited alloys. By using a soluble iron anode, we achieve an unprecedentedly high rate of alloy deposition (25 μm/h at a current density of 20 mA/cm2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.