Abstract

Exfoliated graphite nanoplatelet (xGnP)/copper (Cu) coated carbon fibers were fabricated by electrophoretic deposition under different applied voltages. The electrical and mechanical properties of individual fibers and composites made from these fibers and epoxy resin were investigated. The electrical resistivity of xGnP/Cu coated single carbon fiber is lower than that of the uncoated control sample and decreases with increase in the applied voltage. The xGnP and metallic Cu were simultaneously deposited on the carbon fiber surface as a result of the electrochemical cell configuration. The interfacial shear strength decreases with applied voltage up to 30 V but increases with applied voltage of over 30 V. The interfacial shear strength for the coated samples except the 50 V treated sample is lower than that of control sample. The flexural strength and modulus of xGnP/Cu coated carbon/epoxy composites is higher than those of control sample due to the reinforcing effect of xGnP/Cu coated on the carbon fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.