Abstract

• CNTs were uniformly and stably deposited on Ti plate via EPD. • Cu-Pd alloy was formed by potentiostatic coelectrodeposition on Ti/CNTs. • Ti/CNTs/Cu-Pd electrodes were applied for nitrate reduction. • Ti/CNTs/Cu5-Pd5 possessed the best electrocatalytic performance. • CNTs improved the electrocatalytic activity and stability of the alloy. Copper-palladium (Cu-Pd) alloys have been electrodeposited onto carbon nanotubes, which were uniformly and stably deposited on Ti plates via electrophoretic deposition. Electrodes with a wide range of Cu/Pd atomic ratios were fabricated by potentiostatic coelectrodeposition of Cu and Pd onto Ti/CNTs. They were characterized by energy-dispersive X-ray analyzer, X-ray diffraction and tested for nitrate electroreduction. The electrode deposited in bath with 5 mM Cu 2+ and 5 mM Pd 2+ (Ti/CNTs/Cu5-Pd5) possessed outstanding stability as well as the highest electrocatalytic activity with the best nitrate conversion yield and proper N 2 selectivity, indicating a synergistic effect of Cu and Pd. X-ray photoelectron spectroscopy and scanning electron microscopy analysis of Ti/CNTs/Cu5-Pd5 and Ti/Cu5-Pd5 revealed that CNTs played a remarkable role in the homogeneous formation of the bimetal, significantly improving the alloy's electrocatalytic activity and stability. The fabricated Ti/CNTs/Cu5-Pd5 was proved to be a promising electrode for nitrate electroreduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.