Abstract
Results are presented of a study of the electrochemical behavior of copper(II) and selenium(IV) ions and their joint reduction on a molybdenum electrode by cyclic voltammetry in a tartaric acid electrolyte. The potentiostatic deposition was used to obtain copper selenide deposits on Mo plates. The diffraction and energydispersive analyses demonstrated that a Cu2‒xSe compound is formed with an admixture of the CuSe phase. A suggestion is made that the process of underpotential reduction affects the formation of copper selenide. Copper selenide films were deposited at a potential of ‒0.6 V in the course of 30 min with a thickness of 0.43 μm and high adhesion to the substrate. At potentials in this range, an additional amount of the deposit may be formed due to the chemical reaction between Cu+ and Se2‒ ions. The p-type conduction was determined for films electrodeposited at various potentials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.