Abstract

Electrodeposition of Zn with V was examined from optionally agitated sulfate solutions containing Zn2+ and VO2+ at pH 0–3 and 40°C under galvanostatic conditions. XPS spectra of the deposits showed that V was present in the deposited Zn in the form of its oxide, formed by hydrolysis of V ions. The V content of the deposits increased with increasing pH of the solution and increasing current density. These conditions appear to accelerate the hydrolysis of V ions by means of an increase in hydrogen evolution in the cathode layer. SEM and EPMA studies of the deposits showed that the V in the deposits was segregated at the edges of layered platelet crystals of Zn. Agitation of the electrolyte decreased the V content of the deposits but reduced the segregation of V oxide. Anodic polarization curves for dissolution of Zn in 3% NaCl solution were polarized by codeposition of V oxide with Zn for V contents of <5 mass%. The corrosion current densities of deposits obtained from agitated solutions were smaller than those from un-agitated solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.