Abstract
A sensitive glucose biosensor was fabricated by electrodepositing chitosan–ionic liquid–glucose oxidase biocomposite onto nano-gold electrode. First, nano-gold electrode was constructed by electrochemically depositing gold nanoparticles onto a flat gold electrode surface. Then the nano-gold electrode was immersed in the bath containing p-benzoquinone (BQ), chitosan (CS), glucose oxidase (GOD) and ionic liquid (IL) for electrodeposition of enzymatic electrode. The proton consumption during electroreduction of BQ increased the local solution pH near the electrode surface and led to the deposition of CS hydrogel on the electrode surface. Co-deposition of GOD and IL with the CS hydrogel was achieved. The proposed biosensor exhibited a fast amperometric response (<5 s) to glucose. Under the optimal conditions, the proposed biosensor exhibited a high current sensitivity (14.33 μA mM −1 cm −2), which was 2.8 times of the biosensor prepared by electrodepositing CS–IL–GOD biocomposite on flat gold electrode. The detection limit for glucose was 1.5 μM, which was 20-fold lower compared to the biosensor prepared on flat gold electrode. The linear range for glucose detection was wide from 3.0 μM to 9.0 mM. Moreover, the proposed biosensor exhibited high reproducibility, long-time storage stability and satisfactory anti-interference ability. The applicability of the proposed biosensor to serum samples analysis was also evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.