Abstract

The electrodeposition of Cu, Zn and Cu–Zn deposits from the non-cyanide Zn sulphate and Cu sulphate reduced by citrate at constant stirring speed has been investigated. The composition of the Cu–Zn bath was shown to influence the morphology, electrical resistivity, phase composition, and Cu and Zn content of the Cu–Zn deposits. Their structural and electrical properties have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDAX), cyclic voltammeter (CV) and current–voltage measurements against the temperature for electrical resistivity, respectively. XRD shows that Cu–Zn samples are polycrystalline phase. Resistivity results show that the copper film exhibits bigger residual resistivity than both the zinc and the Cu–Zn alloy. Theoretical calculations of the XRD peaks demonstrate that the average crystallite size of the Cu–Zn alloy decreased and microstrain increased when the Cu alloyed with zinc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call