Abstract

Cu-TiO2 nanocomposites were prepared by electrodeposition method onto copper substrate using an acid copper plating bath containing dispersed nanosized TiO2. The composition of codeposited TiO2 nanoparticles in the composite coatings was controlled by the addition of different concentrations of TiO2 nanoparticles in the bath solution. The average crystallite size was calculated by using X-ray diffraction analysis and it was ~32 nm for electrodeposited copper and ~33 nm for Cu-TiO2 composite coatings. The crystallite structure was fcc for electrodeposited copper and Cu-TiO2 nanocomposite coatings. The surface morphology and composition of the nanocomposites were examined by scanning electron microscopy and energy dispersive X-ray spectroscopy analysis. The effect of TiO2 content on the corrosion and wear resistance properties of the nanocomposite coatings was also presented. The codeposited TiO2 nanoparticles in the deposit increased the corrosion and wear resistance, which were closely related with TiO2 content in the nanocomposites. The wear resistance and microhardness of the Cu-TiO2 nanocomposite coatings were higher than electrodeposited copper. The corrosion resistance property of the electrodeposited copper and Cu-TiO2 nanocomposite coatings was evaluated by electrochemical impedance and Tafel polarization studies. Cu-TiO2 composite coatings were more corrosion resistant than electrodeposited copper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.