Abstract

In this paper, we broaden our previous work, which investigated the influence of graphene nanoplatelets (GNPs) size on microstructure and hardness of composite coatings, to determine the effect of GNP size on wear-resistance and anti-corrosion property of GNP-reinforced nickel coating (Ni/GNPs). The experimental results indicated that the small GNP material size could enhance the wear resistance for nickel composite coating with the wear rate of 13.2 × 10–4 mm3/Nm, the wear depth of 17.69 µm. Meanwhile, the anti-corrosion property is enhanced significantly, this is shown via the low corrosion current density (Icorr value of 1.16 × 10–7 A/cm2) and the high corrosion potential (Ecorr value of − 0.1661 V). In addition, the mass lost in salt fog testing is low with the weight of 12.3 mg, which decreased down to ~ 55.27% compared to pristine Ni coating. These results are attributed to the uniform distribution of the small GNP size inside Ni matrix as well as the grain refinement effect of composite coating when using the small GNP size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.