Abstract
One of the most important problems in the development of proton exchange membrane fuel cells remains the selection of an efficient electrocatalyst support capable of providing a low loading of active metal with minimal changes in the electrochemical surface, electronic conductivity, and activity. In this work, carbon nanotube arrays (CNTAs) grown directly on commercial gas diffusion layers (GDLs) are used to form electrodes of a new type. The CNTAs are used in the electrode as a microporous layer. The catalytic layer is formed in the microporous layer by a method that does not destroy the carbon support structure and consists of the controlled impregnation of CNTAs with the Pt-precursor with subsequent reduction in platinum particles in the surface volume of the layer. The resulting electrode was studied by scanning/transmission electron microscopy and Raman spectroscopy. This electrode provides increased electrical conductivity of the layer and can also improve stability and longer service life due to the enhanced adhesion of carbon materials to the GDL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.