Abstract
Milling electrical discharge machining (EDM) enables the machining of complex cavities using cylindrical or tubular electrodes. To ensure acceptable machining accuracy the process requires some methods of compensating for electrode wear. Due to the complexity and random nature of the process, existing methods of compensating for such wear usually involve off-line prediction. This paper discusses an innovative model of electrode wear prediction for milling EDM based upon a radial basis function (RBF) network. Data gained from an orthogonal experiment were used to provide training samples for the RBF network. The model established was used to forecast the electrode wear, making it possible to calculate the real-time tool wear in the milling EDM process and, to lay the foundations for dynamic compensation of the electrode wear on-line. This paper demonstrates that by using this model prediction errors can be controlled within 8%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.