Abstract

The lifetime and performance of solid-oxide fuel cells (SOFC) and electrolyzer cells (SOEC) can be significantly degraded by oxidation of nickel within the electrode and support structures. This paper documents a detailed computational model describing nickel oxide (NiO) formation as a growing film layer on top of the nickel phase in Ni/YSZ composite electrodes. The model assumes that the oxidation rate is controlled by transport of ions across the film (Wagner’s theory). The computational model, which is implemented in a two-dimensional continuum framework, facilitates the investigation of alternative chemical reaction and transport mechanisms. Model predictions agree well with a literature experimental measurement of oxidation-layer growth. In addition to providing insight in interpreting experimental observations, the model provides a quantitative predictive capability for improving electrode design and controlling operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call