Abstract

The study of the electrode reactions of palladium(II) at non-modified carbon paste electrodes (CPEs) in chloride solution has revealed the existence of a chloropalladate(II) complex at the electrode surface. The complex is formed during the application of anodic potentials after preceding palladium deposition. In the present paper the electrode reactions of PdII at CPEs modified with some N′,N′-disubstituted derivatives of N-benzoylthiourea [as selective ligands for palladium(II)] are studied in chloride solution by cyclic voltammetry. Two reduction peaks are observed in the cathodic scans recorded after deposition of palladium and anodization of the electrode. From the results it is concluded that [in addition to the chloropalladate(II) complex, observed at the non-modified electrode] a second palladium complex is formed at positive potentials. The formation of the palladium(II) complex of the N-benzoylthiourea derivatives by ligand exchange at the electrode surface is assumed. The ligand exchange itself occurs without charge transfer across the electrode|solution interface; therefore, it cannot be detected electrochemically. After palladium deposition and anodic treatment a pronounced "inverse" peak (i.e., an anodic peak in the cathodic scan) with peak currents up to 100 µA is observed at about +0.8 V. Its peak current increases with the amount of deposited palladium and the number of cycles. The reactions at the electrode surface are discussed. The results of the study reveal the existence of two different surface complexes of palladium(II) at ligand-modified CPEs, but the surface reactions could not be elucidated in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call